On the Fedosov Deformation Quantization beyond the Regular Poisson Manifolds
نویسندگان
چکیده
A simple iterative procedure is suggested for the deformation quantization of (irregular) Poisson brackets associated to the classical Yang-Baxter equation. The construction is shown to admit a pure algebraic reformulation giving the Universal Deformation Formula (UDF) for any triangular Lie bialgebra. A simple proof of classification theorem for inequivalent UDF's is given. As an example the explicit quantization formula is presented for the quasi-homogeneous Poisson brackets on two-plane.
منابع مشابه
Brst Quantization of Quasi-symplectic Manifolds and Beyond
A class of factorizable Poisson brackets is studied which includes almost all reasonable Poisson manifolds. In the simplest case these brackets can be associated with symplectic Lie algebroids (or, in another terminology, with triangular Lie bialgebroids associated to a nondegenerate r-matrix). The BRST theory is applied to describe the geometry underlying these brackets and to develop a covari...
متن کاملFedosov Connections on Jet Bundles and Deformation Quantization
We review our construction of star-products on Poisson manifolds and discuss some examples. In particular, we work out the relation with Fedosov’s original construction in the symplectic case.
متن کاملDeformation Quantization of Almost Kähler Models and Lagrange–Finsler Spaces
Finsler and Lagrange spaces can be equivalently represented as almost Kähler manifolds endowed with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov– type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental ...
متن کاملFedosov supermanifolds: II. Normal coordinates
The formulation of fundamental physical theories, classical as well as quantum ones, by differential geometric methods nowadays is well established and has a great conceptual virtue. Probably, the most prominent example is the formulation of general relativity on Riemannian manifolds, i.e., the geometrization of the gravitational force; no less important is the geometric formulation of gauge fi...
متن کاملTriangular dynamical r-matrices and quantization
We study some general aspects of triangular dynamical r-matrices using Poisson geometry. We show that a triangular dynamical r-matrix r : h∗ −→ ∧g always gives rise to a regular Poisson manifold. Using the Fedosov method, we prove that non-degenerate triangular dynamical r-matrices (i.e., those such that the corresponding Poisson manifolds are symplectic) are quantizable, and that the quantizat...
متن کامل